P(x)=(60x-0.3x^2)-(5x+15)

Simple and best practice solution for P(x)=(60x-0.3x^2)-(5x+15) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P(x)=(60x-0.3x^2)-(5x+15) equation:



(P)=(60P-0.3P^2)-(5P+15)
We move all terms to the left:
(P)-((60P-0.3P^2)-(5P+15))=0
We calculate terms in parentheses: -((60P-0.3P^2)-(5P+15)), so:
(60P-0.3P^2)-(5P+15)
We get rid of parentheses
-0.3P^2+60P-5P-15
We add all the numbers together, and all the variables
-0.3P^2+55P-15
Back to the equation:
-(-0.3P^2+55P-15)
We get rid of parentheses
0.3P^2-55P+P+15=0
We add all the numbers together, and all the variables
0.3P^2-54P+15=0
a = 0.3; b = -54; c = +15;
Δ = b2-4ac
Δ = -542-4·0.3·15
Δ = 2898
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2898}=\sqrt{9*322}=\sqrt{9}*\sqrt{322}=3\sqrt{322}$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-3\sqrt{322}}{2*0.3}=\frac{54-3\sqrt{322}}{0.6} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+3\sqrt{322}}{2*0.3}=\frac{54+3\sqrt{322}}{0.6} $

See similar equations:

| Z+2i=0 | | 1/2x+5=-3x+2 | | 37+4k=5 | | 180=123+(x+2x) | | 8p+43=19 | | (3x)(x)=58 | | 15a^2-9a=0 | | x-5)(7x-21)=0 | | 8n(5n+13=7 | | 2x-5x+7=2x-2 | | 180=4x-1+5x-13+5x-13 | | 180=4x-1+4x-1+5x-13 | | Y=3.1x+35 | | 65+x=103 | | 81=12t+5t^2 | | 16+8a=-4a+-32 | | 2x-30=1x+10 | | 180=5x-7+5x-7+2x+62 | | 2x^2+5=-45 | | 1234567890x+1234567890x=100000000000000 | | 7(2a+3)21=100+40 | | 5+x-3=7-2x | | 2n^2=-288 | | 3+14-12c=56 | | x=1/3-11+5 | | 1/11-1/14=1/v | | x=1/3-6 | | 0.05x+7.5=x | | 6x+2(4x-1=25 | | -1=3(x-4)-4 | | 8x+6-5x+3=-3 | | 3^(2x)-2(3)^(x+1)=16 |

Equations solver categories